On the non-negative first-order exponential bilinear time series model
نویسندگان
چکیده
منابع مشابه
Forecasting Enrollment Model Based on First-Order Fuzzy Time Series
This paper proposes a novel improvement of forecasting approach based on using time-invariant fuzzy time series. In contrast to traditional forecasting methods, fuzzy time series can be also applied to problems, in which historical data are linguistic values. It is shown that proposed time-invariant method improves the performance of forecasting process. Further, the effect of using different n...
متن کاملModelling Non-normal First-order Autoregressive Time Series
We shall first review some non-normal stationary first-order autoregressive models. The models are constructed with a given marginal distribution (logistic, hyperbolic secant, exponential, Laplace, or gamma) and the requirement that the bivariate joint distribution of the generated process must be sufficiently simple so that the parameter estimation and forecasting problems of the models can be...
متن کاملON THE STATIONARY PROBABILITY DENSITY FUNCTION OF BILINEAR TIME SERIES MODELS: A NUMERICAL APPROACH
In this paper, we show that the Chapman-Kolmogorov formula could be used as a recursive formula for computing the m-step-ahead conditional density of a Markov bilinear model. The stationary marginal probability density function of the model may be approximated by the m-step-ahead conditional density for sufficiently large m.
متن کاملA new adaptive exponential smoothing method for non-stationary time series with level shifts
Simple exponential smoothing (SES) methods are the most commonly used methods in forecasting and time series analysis. However, they are generally insensitive to non-stationary structural events such as level shifts, ramp shifts, and spikes or impulses. Similar to that of outliers in stationary time series, these non-stationary events will lead to increased level of errors in the forecasting pr...
متن کاملLearning First Order Logic Time Series Classifiers
A method for learning multivariate time series classifiers by inductive logic programming is presented. Two types of background predicate that are suited for this task are introduced: interval based predicates, such as “always”, and distance based, such as the euclidean distance. Special purpose techniques are presented that allow these predicates to be handled efficiently when performing top-d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics & Probability Letters
سال: 2006
ISSN: 0167-7152
DOI: 10.1016/j.spl.2005.10.024